1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
| import numpy as np import matplotlib.pyplot as plt import matplotlib import math import random matplotlib.rcParams['font.family'] = 'STSong' np.set_printoptions(linewidth=400) np.set_printoptions(threshold=np.inf)
""" data.txt数据载入 ----------------- 重庆,106.54,29.59 拉萨,91.11,29.97 乌鲁木齐,87.68,43.77 银川,106.27,38.47 呼和浩特,111.65,40.82 南宁,108.33,22.84 哈尔滨,126.63,45.75 长春,125.35,43.88 沈阳,123.38,41.8 石家庄,114.48,38.03 太原,112.53,37.87 西宁,101.74,36.56 济南,117,36.65 郑州,113.6,34.76 南京,118.78,32.04 合肥,117.27,31.86 杭州,120.19,30.26 福州,119.3,26.08 南昌,115.89,28.68 长沙,113,28.21 武汉,114.31,30.52 广州,113.23,23.16 台北,121.5,25.05 海口,110.35,20.02 兰州,103.73,36.03 西安,108.95,34.27 成都,104.06,30.67 贵阳,106.71,26.57 昆明,102.73,25.04 香港,114.1,22.2 澳门,113.33,22.13 """ city_name = [] city_condition = [] with open('data.txt','r',encoding='UTF-8') as f: lines = f.readlines() for line in lines: line = line.split('\n')[0] line = line.split(',') city_name.append(line[0]) city_condition.append([float(line[1]), float(line[2])]) city_condition = np.array(city_condition) """ 地图展示 """ def map_show(): fig = plt.figure() ax1 = fig.add_subplot() ax1.set_title('城市分布图') for i in range(city_count): plt.annotate(i+1,xy=(city_condition[i][0], city_condition[i][1]), xytext=(city_condition[i][0] + 0.3, city_condition[i][1] + 0.3)) plt.scatter(city_condition[:, 0], city_condition[:, 1]) plt.xlabel('经度') plt.ylabel('纬度') plt.show()
""" 距离矩阵和总距离的计算 """
city_count = len(city_name) Distance = np.zeros((city_count+1, city_count+1)) for i in range(1,city_count+1): for j in range(1,city_count+1): Distance[i][j] = math.sqrt((city_condition[i-1][0] - city_condition[j-1][0]) ** 2 + (city_condition[i-1][1] - city_condition[j-1][1]) ** 2)
def get_total_distance(path_new): distance = 0 for i in range(city_count-1): distance += Distance[int(path_new[i])][int(path_new[i+1])] distance += Distance[int(path_new[-1])][int(path_new[0])] return distance
""" 全局参数设计 1.禁忌表长度设置 2.候选集长度设置 3.迭代次数的设置 """
tabu_limit = 100
tabu_list = []
del_list = [] candidate_length = 200
candidate = np.zeros((candidate_length,city_count)) candidate_distance = np.zeros(candidate_length) iteration = 200
distance_best = [] """ 用贪婪算法求出初始解 """ def greedy(): i = 1 n = city_count j = 0 distance_sum = 0 s = [] s.append(1) while True: k = 1 Detemp = 99000 while True: flag = 0 if k in s: flag = 1 if (flag == 0) and Distance[k][s[i-1]]<Detemp: j = k Detemp = Distance[k][s[i-1]] k += 1 if k > n: break s.append(j) i += 1 distance_sum += Detemp if i >= n: break return s """ 核心思想 1.创建一张禁忌表,设置禁忌表的长度。 2.设置候选集合的长度。 3.设置迭代次数。 4.用贪心算法求出当前最优路径和当前最优值,分别赋值给当前路径和当前值。 """ """ 为什么要设置禁忌表?防止循环搜索 为什么要解禁呢?比当前解好但是呢,却被禁忌了。 """ """ 变异操作 """
def exchange(index1,index2,arr): current_list = arr.copy() current_list[index1] = arr[index2] current_list[index2] = arr[index1] return current_list """ 领域操作,产生200个候选值 """
def get_candidate(p): exchange_position = [] i = 0 while i < candidate_length: current = random.sample(range(0,city_count),2) if current not in exchange_position: exchange_position.append(current) candidate[i] = exchange(current[0],current[1],p) candidate_distance[i] = get_total_distance(candidate[i]) i += 1 return candidate,candidate_distance,exchange_position """ 禁忌表操作,首先根据领域找到候选集中适应度高的参数,对最优值和当前值操作,迭代 """ def main(): global candidate,candidate_distance,exchange_position,del_list global value_best,value_current,path_best,path_current_ path_current = greedy() value_best = 9900 for rt in range(iteration): candidate,candidate_distance,exchange_position = get_candidate(path_current) min_index = np.argmin(candidate_distance) if exchange_position[min_index] not in tabu_list: if candidate_distance[min_index] < value_best: value_best = candidate_distance[min_index] path_best = candidate[min_index].copy() path_current = candidate[min_index].copy() value_current = candidate_distance[min_index] tabu_list.append(exchange_position[min_index]) distance_best.append(value_best) else: path_current = candidate[min_index].copy() value_current = candidate_distance[min_index] tabu_list.append(exchange_position[min_index]) distance_best.append(value_best) else: if candidate_distance[min_index] < value_best: c = tabu_list.index(exchange_position[min_index]) del_list.append(tabu_list[tabu_list.index(exchange_position[min_index])]) del tabu_list[tabu_list.index(exchange_position[min_index])] value_best = candidate_distance[min_index] path_best = candidate[min_index].copy() path_current = candidate[min_index].copy() value_current = candidate_distance[min_index] distance_best.append(value_best) else: candidate_distance[min_index] = 99000 b = True while b : min_index = np.argmin(candidate_distance) if exchange_position[min_index] not in tabu_list: b = False else: candidate_distance[min_index] = 99000 path_current = candidate[min_index].copy() value_current = candidate_distance[min_index] tabu_list.append(exchange_position[min_index]) distance_best.append(value_best) if len(tabu_list) > tabu_limit: del tabu_list[0] print("禁忌搜索算法解决tsp问题") print("当前路径:", path_current) print("当前值", value_current) print("全局最优值为:", value_best) print("全局最优路径:", path_best) draw(distance_best,path_best) def draw(distance_best,path_best): map_show() fig = plt.figure() ax3 = fig.add_subplot() ax3.set_title('距离迭代图') plt.plot(np.array(distance_best)) plt.xlabel('迭代次数') plt.ylabel('距离值') plt.show() fig = plt.figure() ax2 = fig.add_subplot() ax2.set_title('最佳路线图') x = [] y = [] path = [] for i in range(city_count): x.append(city_condition[int(path_best[i])- 1][0]) y.append(city_condition[int(path_best[i])- 1][1]) path.append(int(path_best[i])) x.append(x[0]) y.append(y[0]) path.append(path[0]) for i in range(len(x)): plt.annotate(path[i], xy=(x[i], y[i]), xytext=(x[i] + 0.3, y[i] + 0.3)) plt.plot(x, y,'-o') plt.show() if __name__ =="__main__": main()
|