自动驾驶领域的新发展:端到端模型

传统的自动驾驶技术基于模块化架构,将感知、决策、规划和控制等功能模块分别处理,以实现最终的车辆控制。尽管模块化设计在早期阶段为自动驾驶的发展奠定了坚实基础,但随着行业向更高自动化级别迈进,模块化架构暴露出效率低下、信息传递损耗等问题。
为解决这些痛点,端到端架构逐步进入行业视野,并逐渐成为推动L4及以上高级别自动驾驶发展的关键路径。端到端智能驾驶系统借助深度学习模型,将传感器输入直接映射为车辆控制指令,避免了传统模块化设计中的冗余转换步骤,使得系统能够实现全局最优和高效的计算性能。

端到端技术的定义

端到端技术在智能驾驶领域是指由传感器获取的数据直接通过深度学习神经网络模型处理,输出具体的车辆控制指令,实现从“感知”到“决策”的一体化过程。

端到端架构的优势

端到端技术之所以在智能驾驶领域备受青睐,主要是由于其在信息传递效率、系统计算性能和泛化能力等方面的优势。传统模块化方案中,由于数据在感知、决策、规划和控制之间频繁传递,系统的反应速度和实时性受到影响,且多次转换过程会导致误差累计和信息丢失。
端到端架构可以显著减少信息传递的损耗。通过使用单一的神经网络模型,传感器数据可以在不经多次转换的情况下直接用于控制决策,从而有效降低信息在模块间传递的丢失和延迟。此外,端到端系统通过压缩模块化设计中的子模块数量,实现了系统架构的简化,有助于降低车辆计算系统的功耗和体积,从而更适合大规模商业化量产。
端到端架构在系统计算效率方面也具有显著优势。由于系统不再需要多个模块的分层处理,而是采用深度学习神经网络一次性进行感知、决策、规划和控制的全局优化,端到端架构在信息处理速度上较传统系统有明显提升。此外,端到端系统能够高效学习和适应新场景的能力,其泛化能力得到显著提升。基于神经网络的深度学习模型在海量数据中自适应学习,在面对陌生或极端环境时,端到端模型比传统规则驱动的模块化方案具有更强的应对能力。

端到端的三阶段架构

端到端系统在实现过程中通常分为三个阶段,分别是感知“端到端”、模块化“端到端”和OneModel(单一模型)端到端,这三个阶段是端到端技术逐步成熟并向单一模型收敛的路径。
感知“端到端”:在端到端技术的初步实现中,感知模块是端到端神经网络的主要应用场景。该阶段利用基于多传感器融合的神经网络模型处理感知任务,以实现多维度数据融合和深度特征提取。常见的方案是采用鸟瞰视角(BEV)结合Transformer结构,通过对场景的整体特征建模,实现精确的目标检测和障碍物识别。目前,感知“端到端”是行业中应用最广泛的端到端方案,在自动驾驶感知领域有较大的技术成熟度。
模块化“端到端”:在感知端到端的基础上,逐步将决策和规划模块引入神经网络模型中,形成模块化端到端体系。在该阶段,控制模块不再依赖于传统的规则设计,而是通过深度学习模型生成控制决策。为避免感知到控制之间的数据传递损耗,模块间采用特征向量形式进行数据交换。模块化端到端实现了感知、决策和规划之间的协调与数据无损传递,是端到端技术逐步向一体化系统过渡的阶段。
OneModel端到端:最终形态的端到端系统以单一神经网络模型实现从传感器数据输入到车辆运动轨迹的输出。OneModel在架构上实现了模块融合,打破了感知、决策和规划之间的界限,直接输出路径规划结果。该模型主要基于强化学习和模仿学习技术训练,通过自动化的数据特征学习避免了人为规则的干预。OneModel端到端是端到端技术的理想状态,具备更高的系统集成度和全局最优能力。

模仿学习与强化学习

在端到端系统的训练过程中,模仿学习(Imitation Learning)和强化学习(Reinforcement Learning)是主流的神经网络训练方法。模仿学习通过模仿专家驾驶行为,让神经网络学习驾驶的最佳策略。模仿学习采用行为克隆(Behavior Cloning)和逆最优控制(Inverse Optimal Control)等算法,主要目标是将人类专家驾驶数据作为输入,让模型在不同驾驶环境中学习最佳响应策略。模仿学习的优点在于学习过程较为直接,但对数据依赖度高,且在复杂场景中容易出现泛化问题。
强化学习则是通过构建奖励函数和环境模型,使得智能体通过不断试错优化驾驶策略。相比模仿学习,强化学习在端到端技术中表现出更强的适应性。通过设计合理的奖励函数,强化学习可以在不断的训练过程中提升模型应对复杂场景的能力。然而,强化学习的设计难点在于如何准确地定义奖励函数,以适应道路、天气、车辆动态等多种环境的变化。