1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
| import numpy as np import elkai import math import matplotlib.pyplot as plt import scipy as sp import scipy.spatial as ssp
""" data.txt数据载入 ----------------- 重庆,106.54,29.59 拉萨,91.11,29.97 乌鲁木齐,87.68,43.77 银川,106.27,38.47 呼和浩特,111.65,40.82 南宁,108.33,22.84 哈尔滨,126.63,45.75 长春,125.35,43.88 沈阳,123.38,41.8 石家庄,114.48,38.03 太原,112.53,37.87 西宁,101.74,36.56 济南,117,36.65 郑州,113.6,34.76 南京,118.78,32.04 合肥,117.27,31.86 杭州,120.19,30.26 福州,119.3,26.08 南昌,115.89,28.68 长沙,113,28.21 武汉,114.31,30.52 广州,113.23,23.16 台北,121.5,25.05 海口,110.35,20.02 兰州,103.73,36.03 西安,108.95,34.27 成都,104.06,30.67 贵阳,106.71,26.57 昆明,102.73,25.04 香港,114.1,22.2 澳门,113.33,22.13 """ city_name = [] city_condition = [] with open('data.txt','r',encoding='UTF-8') as f: lines = f.readlines() for line in lines: line = line.split('\n')[0] line = line.split(',') city_name.append(line[0]) city_condition.append([float(line[1]), float(line[2])]) city_condition = np.array(city_condition)
def genDistanceMat(x,y): X=np.array([x,y]) distMat=ssp.distance.pdist(X.T) sqdist=ssp.distance.squareform(distMat) return sqdist x,y = city_condition[:,0],city_condition[:,1]
distance = genDistanceMat(x, y)
def cal_fitness(solutionnew): valuenew = np.sum(distance[solutionnew[:-1],solutionnew[1:len(solutionnew)]]) return valuenew
solutionbest = elkai.solve_int_matrix(distance) solutionbest.append(0) print("最优解方案:",solutionbest) print("最优解总长度:",cal_fitness(solutionbest))
|